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Cluster, backbone, and elastic backbone structures of the multiple invasion percolation

Roberto N. Onody and Reginaldo A. Zara
Departamento de Fı´sica e Informa´tica, Instituto de Fı´sica de Sa˜o Carlos, Universidade de Sa˜o Paulo, Caixa Postal 369,

13560-970 Sa˜o Carlos, São Paulo, Brazil
~Received 19 February 1997; revised manuscript received 13 May 1997!

We study the cluster, the backbone, and the elastic backbone structures of the multiple invasion percolation
for both the perimeter and the optimized versions. We investigate the behavior of the mass, the number of red
sites~i.e., sites through which all the current passes!, and loops of those structures. Their corresponding scaling
exponents are also estimated. By construction, the mass of the optimized model scales exactly with the
gyration radius of the cluster—we verify that this also happens to the backbone. Our simulation shows that the
red sites almost disappear, indicating that the cluster has achieved a high degree of connectivity.
@S1063-651X~97!14908-X#

PACS number~s!: 64.60.Ak, 64.60.Cn, 05.50.1q
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I. INTRODUCTION

When a nonviscous liquid is injected into a porous m
dium already filled with a viscous fluid two distinct regime
appear: one where the dominant forces are ofcapillary na-
ture and another where theviscousforces are predominant
Depending on the injection rate the system can be foun
one of these regimes. The theoretical description of suc
system is based on two models: invasion percolation@1# and
diffusion-limited aggregation~DLA ! @2#. The invasion per-
colation model is indicated when the fluid flow is slow, th
is, when the capillary number is small. The displacem
process of the fluid follows minimum resistance paths:
smaller pores are filled or invaded first.

Grassberger and Manna@3# pointed out that the invasion
percolation is a kind of self-organizing criticality@4# exhib-
iting scale invariant behavior in time and space and evolv
into a natural critical state. Indeed, there are two kinds
invasion percolation models:with and without trapping@1#.
The trapping occurs when the displaced fluid is an unco
pressible fluid and it is completely surrounded by the oth
These models belong to different universality class. The v
sion with trapping has a fractal dimensionDF;1.82 and the
case without trapping corresponds to thecritical ordinary

percolation@1# (DF5 91
48 ). Important applications of the in

vasion percolation model were found, extending from
terciary recovery of petroleum to the fingering phenomena
soils @5#.

Many modifications of the original invasion percolatio
model have been proposed. They take into account the ac
of an external gravitational field@6–8# or the flux with a
privileged direction@9#. In the pioneer formulation of the
invasion percolation model@1#, at each growth step onlyone
lattice site was allowed to be occupied. Recently@10#, a
more realistic model was investigated, which permits tha
certain number of lattice sites can be invaded at the s
time: themultiple invasion percolationmodel. There are two
kinds of multiple invasion percolation: the perimeter mod
and the optimized model. In the first model the clus
growth is controlled by the flux through the perimeter. T
optimized model is governed by a scaling relation betwe
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the mass and the gyration radius of the cluster. Refere
@10# studied the multiple invasion percolation~in its sitever-
sion, as in this paper! determining the abundance of vertic
type, the mean coordination number, the acceptance pro
and the fractal dimensions. An interestingburstphenomenon
was detected and analyzed in the optimized model.

The backbone is the intersection ofall self-avoiding
walks connecting two pointsP1 and P2 of the lattice. This
means that if we pass a current betweenP1 andP2 the back-
bone is the set of points carrying current, and all dangl
ends are discarded. The elastic backbone is the union o
the shortest paths betweenP1 andP2 . In our caseP1 is the
lattice center andP2 is the point where the cluster finds th
frontier for the first time~the growth process stops at th
moment!. The investigation of the backbone of clusters h
been of interest for a long time. Possible applications are
conductivity of random systems@11# and the flow of fluids in
porous media@12#.

The cluster, the backbone, and the elastic backbone
the importantstructuresof the fractal objects. The determ
nation of the properties of such structures can lead to a be
understanding of the fractal objects and even to a classifi
tion scheme for them. But what are the relevant parame
to be measured in these structures? We can list the follow
quantities: the mass, the minimum path, the number of
points~i.e., points through which all the current passes!, and
the number of loops. At criticality, all of them scale as
power law with the lattice size. So they can be characteri
by their corresponding scaling exponents.

The minimum path is the shortest distance between
lattice points. The lengths of the minimum path or ‘‘chem
cal distance’’ are usually greater than their Euclidean d
tance @13#. The red points are the throttle points throug
which all the current passes—if they are removed the fl
stops.

In the present paper we study the cluster, the backbo
and the elastic backbone structures of the multiple invas
percolation for both the perimeter and optimized models.
determine the backbone and the elastic backbone we
ployed the burning algorithm@14#. Although there are actu
ally more efficient algorithms based on artificial intelligen
theory @15# or recursive algorithm@16#, we prefer the burn-
ing technique because beyond the backbone and elastic b
2548 © 1997 The American Physical Society
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56 2549CLUSTER, BACKBONE, AND ELASTIC BACKBONE . . .
bone identification it also permits the determination of t
red sites and loops.

The scaling exponents for the mass, the red sites,
minimum path, and the loops are found for many values
the parametersF andD of the perimeter and the optimize
models. We did not strive to make these exponents v
precise. Indeed we paid more attention to the phys
changes occurring with the variation of the parameters
long as both models were conceived to continuously inter
late from fractal to compact objects. The optimized mo
reveals two amazing properties: not only the cluster but a
the backbone mass scalesexactly with the gyration radius
and the red points practically do not exist anymore. T
means that the cluster, generated with the optimized a
rithm, has acquired a high degree of connectivity witho
having to increase its fractal dimension.

II. THE PERIMETER MODEL

We briefly recall the growth mechanism established
the perimeter model. Suppose that at some growth staget the
cluster mass isMt and the rectangle area inside which t
cluster is inscribed isA. The square root ofA can be inter-
preted as a measure of the correlation length@17#. This in-
terpretation comes from the fact that, as in the ordinary
vasion percolation, the multiple invasion percolation can a
be thought of as a kind of critical percolation model@10#. At
time t11, the cluster massMt11 will be given by

Mt115Mt1Int~4FAA!, ~1!

where Int means the integer part, andF is an external pa-
rameter (0<F<1) corresponding to the fraction of the p
rimeter 4AA to be invaded at timet11. We start the grow-
ing process at the center of a square lattice.

It was numerically shown in Ref.@10# that for F values
greater than 1/2 the cluster is compact and for 0<F<0.5 it
interpolates between the ordinary invasion percolation~with

fractal dimensionDF5 91
48 ) and the closed-packed lim

(DF52). We found a simple analytic demonstration of th
fact. For a lattice sizeL, a cluster growingcompactlyfrom
its center will touch the boundary at a timet5L/2 and it will
acquire the form of a square with sidel 5L/&. The mass is
Mt5L2/2. At time t11, all available sites will be invaded
and the maximum possible mass isMt115(L12)2/2. Using
Eq. ~1! we have the inequality

F<
1

2
1

1

2L
, ~2!

which for large lattices saturates atF5 1
2 .

In order to obtain the scaling exponents, throughout t
section we use lattices of sizeL551, 101, 201, and 401.

A. The mass

The mass of fractal objects@18# scales with the lattice size
L as

M;LDF. ~3!
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The cluster mass, the fractal dimension, and its dep
dence onF were already studied@10#. Here we extend the
results to the backbone and the elastic backbone. The
for the backbone are of good quality and they were obtai
by averaging over 100–2000 realizations. We get, for
ample, DF(F50)51.6460.01, which is completely com
patible with the most extensive simulation performed
Grassberger@16#, who got 1.64760.004. Our results are
shown in Table I. With increasingF the backbone fracta
dimension goes to 2 in a faster way than those of the clu
itself. From Table I we see that aroundF;0.3 some expo-
nents break their monotonic behavior. At this point the clu
ter has a circular form and the corresponding gyration rad
is maximum@10#.

For the elastic backbone we found deviations from
straight line when we plotted ln(M)ln(L). This strongly indi-
cates that corrections to scaling are necessary. We ado
the ratio method@13# to correct them. ForF50 we got
DF51.1760.04, which is in fair agreement with the resu
of Herrmannet al. @14#: 1.1060.05. WhenF increases, the
trend is that the elastic backbone approaches the form
straight line connecting the lattice center to the point wh
the cluster hits the frontier. The mass exponent goes to

B. The red sites

The number of red sitesNr scales as

Nr;LDr. ~4!

Here again corrections to scaling are necessary.
course, the exponentsDr for the cluster and the backbone a
the same. In the case of the ordinary invasion percola
(F50), Dr is known exactly@19#. Coniglio used the rela-
tions between the percolation model, Potts model, and C

lomb gas to getDr5
3
4 . Our resultDr(F50)50.7760.02 is

in good agreement. AsF goes to 0.5 the exponentDr ap-
proaches zero~see Table I!. For the elastic backbone we ge

TABLE I. The scaling exponents of the perimeter model. T
order they appear in this table corresponds to the cluster, backb
and elastic backbone, respectively. Those marked with an ast
were calculated using the ratio method.

F DF Dr Dl Dmin

1.88~1! 0.77(2)* 1.98~1!

0.0 1.64~1! 0.77(2)* 1.72~1! 1.14(4)*
1.17(4)* 1.08(5)* 1.19~1!

1.98~1! 0.38(6)* 1.99~1!

0.1 1.89~2! 0.38(6)* 1.92~1! 1.05(1)*
1.05(2)* 1.10(2)* 1.17~1!

1.99~1! 0.29(6)* 1.99~1!

0.2 2.00~2! 0.29(6)* 2.00~2! 1.05(1)*
1.02(2)* 1.08(2)* 1.11~1!

1.98~1! 0.07(4)* 1.95~1!

0.3 2.00~1! 0.07(4)* 1.94~3! 1.04(1)*
1.03(3)* 1.03(3)* 1.12~1!

1.99~1! 0.05(4)* 1.97~1!

0.4 2.00~1! 0.05(4)* 1.97~4! 1.02(1)*
1.01(4)* 1.01(3)* 1.00~3!
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2550 56ROBERTO N. ONODY AND REGINALDO A. ZARA
Dr(F50)51.0860.05. As we have already observed, t
elastic backbone approaches a straight line with increa
F. This means that almost every site belonging to the ela
backbone is a red site, soDr;DF→1 asF goes to 0.5.

C. The loops

We can put a bond connecting any two nearest-neigh
occupied sites. The result is a connected graph for which
Euler relation holds:Nl5Nb2M11, whereNl is the num-
ber of cycles or loops;Nb is the number of bonds andM is
the mass or the number of sites. For the burning algorithm
the square lattice,Nl is calculated by counting the number
times that one tries to burn a site that is already burned in
same time unit.

The number of loopsNl scales with the lattice sizeL as

Nl;LDl. ~5!

The data are of very good quality and no correction
scaling was necessary. The exponentDl approaches 2 with
increasingF for both the cluster and the backbone. This is
consequence of the Euler relation. AsF increases, the clus
ters become more compact,Nb approaches 2M , and, for
large clusters,Nl;M;L2. On the other hand, looking a
Table I, the exponent seems to approach 1 for the ela
backbone but this not true. In Fig. 1 we show one typi
cluster withF50.4 andL5401. The elastic backbone star
at the center and follows to the right nearly as a straight
until it finds an obstacle~a site with a large random numbe
associated!. Then a kind of jet appears, which increases
number of loops. In the limitL→` such an effect can only
be avoided ifF>0.5. This means that for the elastic bac
boneDl goes abruptly to zero nearF;0.5 as shown in the
inset of Fig. 1.

FIG. 1. In gray is a typical cluster of the perimeter model w
F50.4 on a lattice of sizeL5401. The elastic backbone is show
in black. The inset gives the dependence of the loop number sc
exponent withF.
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D. The minimum path

The minimum path scales as

l min;LDmin. ~6!

Naturally, the exponentDmin is the same for the cluster
backbone, and elastic backbone. Our estim
Dmin(F50)51.1460.04 is consistent with the most precis
valueDmin51.130760.0004@16#. We see from Table I tha
Dmin approaches 1 with increasingF.

III. THE OPTIMIZED MODEL

The optimized model@10# was devised in order to have
growth mechanism obeyingexactlythe scaling

M;~Rg!D ~7!

or as near to it as possible~Rg is the gyration radius andD is
a real positive external parameter that can be tuned!.

Basically we use the following strategy: ateachgrowing
step we have a list containingall the cluster perimeter site
that can be invaded and we seek the number of sites
should be invaded in order that Eq.~7! is verified as closely
as possible. This proceeding builds a fractal object tha
extremely stabilized in the sense that inanystage or size the
scaling is perfectly obeyed not only in the asymptotic lim
~as usual!. Another important advantage is that the necess
of mass averages on the cluster ensemble diminishes.
hope this can be very useful in dilute systems.

Any cluster is representative because the mass disper
is very small. As an example, we compare the ratioNp /No
(Np andNo are the number of experiments performed in t
perimeter and optimized models, respectively! when both
models are simulated to achieve nearly the same rela
standard deviationDM /M . The results are shown in Tabl
II.

For one-to-one realization, we have already compared
optimized algorithm to that of the ordinary invasion perco
tion. The results were even more impressive~see Fig. 6 of
Ref. @10#!.

As shown in Ref.@10#, whenDP@ 91
48,2# it coincides with

the usual fractal dimensionDF ; if 0 ,D, 91
48 the system is

frustrated in the sense that it tries but fails to invade less t
one site; ifD.2 the system is also frustrated but now for

ng

TABLE II. The ratio Np /N0 measures how many times th
number of experiments in the perimeter modelNp exceeds that of
the optimizedNo when we impose they have the same relat
standard deviationDM /M . The first and the second lines corre
spond to the cluster and the backbone, respectively. We u
No(L551,101)5100,No(L5201)515.

L DM /M Np /No

51 0.009 21
0.013 10

101 0.009 24
0.013 13

201 0.017 36
0.022 25
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56 2551CLUSTER, BACKBONE, AND ELASTIC BACKBONE . . .
different reason: the invasion cannot be faster than allow
by the two-dimensional lattice. In the last two situationsD
ÞDF .

In this paper we use the optimized algorithm to simul
only onecluster. The growth of this unique cluster is stopp
each 50 steps. Then we measure the mass and the loop
ber for both the cluster and its backbone. Their correspo
ing gyration radius and the minimum path are also de
mined. At each stage the rectangle in which the cluste
actually inscribed is also obtained~up to lattice size
L5401!. The lattice center and the pointP2 where the clus-
ter touches that rectangle are used to get the minimum p
The elastic backbone is the collection of all these paths.
a faint structure with almost one-dimensional characterist
When we pass from one rectangle to the next, usuall
happens thatP2 turns, for example, from north to south o
east. So in just one step the sites composing the elastic b
bone change wildly, precluding its determination~remember
that here no averages are made!.

We studied the optimized model only in the physical

gion DP@ 91
48 ,2#. Below we present our results.

A. The mass

Naturally, D[DF for the cluster mass. To our surpris
the scaling~7! is also perfectly obeyed by the backbone@see
Fig. 2~a!#. Remember that Eq.~7! was only imposed on the
cluster. In Table III we present the fractal dimensionsDF for
some values ofD. Remember that we performed only
unique realization. The errors bars correspond to the stan
deviation calculated along this experiment. Observe tha
D51.89 ~the fractal dimension of the ordinary invasion pe
colation! we get for the backboneDF51.7460.01, which is
greater than the 1.64760.004 @16# of the ordinary invasion
percolation. This means that although the optimized mode
D51.89 and the ordinary invasion have thesamecluster
fractal dimension, they are intrinsically different since th
backbones are different. Conductivity properties will not
the same.

FIG. 2. ~a! The symbolo stands for the logarithm plot of the
backbone mass vs its gyration radius.~b! The logarithm dependenc
of the backbone loop numberNl with the gyration radius.
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B. The red sites

An astonishing result that we got is that the number of
sitesNr of the optimized model isvery small and random. It
does not obey any power law. For example, when
grow one cluster and count the number of red sites at s
L551,101,151,201,251,301,401 we findNr51,8,8,1,6,3,7.
To investigate this further, we simulate atD51.95 ~just in
the middle of the physical region@1.89,2.00#! with lattice
sizes L551,101,151,201 and the number of realizatio
100,100,60,15, respectively. We got̂Nr&51.33,1.49,
1.43,1.87. This brings us to the conclusion that for our op
mized model the concept of red sites is not important. T
number of red sites number is so small that the probability
disconnecting the cluster by removing randomly any site
practically zero. The optimized algorithm destroys the r
sites, increasing the cluster connectivity.

C. The loops

The number of loopsNl scales with the gyration radiu
Rg in the usual way:

Nl;~Rg!Dl. ~8!

Looking at Table III we conclude that, as expected, bo
exponents go to 2 with increasingD.

To see the influence of the ensemble averages on the
ing exponents we have performed 40 realizations of the
timized model on a lattice sizeL5251 andD51.91. We got
Dl51.73(4) for the cluster;DF51.84(1) andDl51.70(2)
for the backbone, andDmin51.02(3). These results are fairly
good when compared toDl51.78(1); DF51.82(1),
Dl51.72(1), andDmin51.05(2), respectively, obtained for
just one realization on sizeL5401. Unfortunately, we were
not able to simulate larger lattices because of the huge C
demand~a uniqueL5401 realization took 52 h on an Alpha
275 station!.

D. The minimum path

The minimum path scales as Eq.~6!. Our results are
shown in Table III. As in the perimeter model, the expone
Dmin approaches 1 as the cluster becomes more compac

TABLE III. The scaling exponents of the optimized model. Th
order they appear in this table corresponds to the cluster and b
bone, respectively.

D DF Dl Dmin

1.89 1.89 1.74~1! 1.17~8!

1.74~1! 1.63~1!

1.91 1.91 1.78~1! 1.05~2!

1.82~1! 1.72~1!

1.95 1.95 1.83~1! 1.00~2!

1.93~1! 1.82~1!

2.00 2.00~1! 2.00~1! 1.00~1!

1.99~1! 1.99~1!
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E. The burst phenomenon

We already know from Ref.@10# that the system is frus

trated whenDP@0,91
48 # (DF5 91

48 ) or D.2 (DF52). In the
last regime the burst phenomenon takes place. This co
sponds to an enormous and sudden mass explosion.
simulate atD55.00 (L5201) just before and after one suc
explosion~at time step 965, just as in Fig. 11 of the Re
@10#!. The results for the cluster and the backbone are sh
in Table IV. It shows a dramatic increase~decrease! of the
mass and loops~red sites!.

TABLE IV. The abrupt variation of the mass, loops, and r
points at the moment of the explosion.

Cluster Backbone
Before After Before After

Mass 1619 2358 1045 2310
Red points 52 1 52 1
Loops 863 1981 776 1981
hy
e-
e

n

IV. CONCLUSIONS

We use the burning method to identify and analyze
cluster, the backbone, and the elastic backbone structure
the multiple invasion percolation model. We determine t
scaling exponents for both the perimeter and the optimi
models as well as their dependence with the parameteF
andD. For those structures we also study the behavior of
mass, the number of red points, the number of loops, and
minimum path. The optimized model in the physical regi
D5DFP@ 91

48 ,2# exhibited two amazing properties: the pe
fect scaling of the backbone mass with its gyration rad
and the disappearance of red points. This model seems t
well suited to treat dilute systems where the fluctuations
the clusters ensemble hamper the data accuracy and c
the reality.
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