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Cluster, backbone, and elastic backbone structures of the multiple invasion percolation

Roberto N. Onody and Reginaldo A. Zara
Departamento de Bica e Informéica, Instituto de Fsica de Sa Carlos, Universidade de ®aPaulo, Caixa Postal 369,
13560-970 Sa Carlos, Sa Paulo, Brazil
(Received 19 February 1997; revised manuscript received 13 May) 1997

We study the cluster, the backbone, and the elastic backbone structures of the multiple invasion percolation
for both the perimeter and the optimized versions. We investigate the behavior of the mass, the number of red
sites(i.e., sites through which all the current pagsasd loops of those structures. Their corresponding scaling
exponents are also estimated. By construction, the mass of the optimized model scales exactly with the
gyration radius of the cluster—we verify that this also happens to the backbone. Our simulation shows that the
red sites almost disappear, indicating that the cluster has achieved a high degree of connectivity.
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PACS numbes): 64.60.Ak, 64.60.Cn, 05.56.q

[. INTRODUCTION the mass and the gyration radius of the cluster. Reference
[10] studied the multiple invasion percolati¢im its site ver-
When a nonviscous liquid is injected into a porous me-sion, as in this papgdetermining the abundance of vertice
dium already filled with a viscous fluid two distinct regimes tyPe, the mean coordination number, the acceptance profile,
appear: one where the dominant forces areagillary na- and the fractal dimensions. An interestibgrstphenomenon

ture and another where théscousforces are predominant. was detected and analyzed in the optimized model.

. S . The backbone is the intersection afl self-avoiding
Depending on the injection rate the system can be found Walks connecting two point®,; and P, of the lattice. This
one of these regimes. The theoretical description of such

. : ) fheans that if we pass a current betw&randP, the back-
system is based on two models: invasion percoldidrand  pone is the set of points carrying current, and all dangling
diffusion-limited aggregatioDLA) [2]. The invasion per- ends are discarded. The elastic backbone is the union of all
colation model is indicated when the fluid flow is slow, that the shortest paths betwe®3 andP,. In our caseP; is the
is, when the capillary number is small. The displacementattice center andP, is the point where the cluster finds the
process of the fluid follows minimum resistance paths: thefrontier for the first time(the growth process stops at this
smaller pores are filled or invaded first. momenj. The investigation of the backbone of clusters has
Grassberger and Maniia] pointed out that the invasion been of .in.terest for a long time. Possible applications are the
percolation is a kind of self-organizing criticalify] exhib- conductivity of random systeni41] and the flow of fluids in

e : . L . did12].
iting scale invariant behavior in time and space and evolvind©"0Us M€ .
into a natural critical state. Indeed, there are two kinds of The cluster, the backbone, and the elastic backbone are

: : : . . . the importantstructuresof the fractal objects. The determi-
invasion percolation modelsvith and without trapping[1]. P )

nation of the properties of such structures can lead to a better

The trapping occurs when the displaced fluid is an urlcomijnderstanding of the fractal objects and even to a classifica-

pressible fluid and it is completely surrounded by the otheryjo, scheme for them. But what are the relevant parameters
These models belong to different universality class. The verg, e measured in these structures? We can list the following
sion with trapping has a fractal dimensib~1.82 and the 4 anities: the mass, the minimum path, the number of red
case without trapping corresponds to tétical ordinary  points(i.e., points through which all the current pagsesid
percolation[1] (Dg= 33). Important applications of the in- the number of loops. At criticality, all of them scale as a
vasion percolation model were found, extending from thepower law with the lattice size. So they can be characterized
terciary recovery of petroleum to the fingering phenomena irby their corresponding scaling exponents.
soils[5]. The minimum path is the shortest distance between two
Many modifications of the original invasion percolation lattice points. The lengths of the minimum path or “chemi-
model have been proposed. They take into account the actiaral distance” are usually greater than their Euclidean dis-
of an external gravitational fiel@6—8] or the flux with a  tance[13]. The red points are the throttle points through
privileged direction[9]. In the pioneer formulation of the which all the current passes—if they are removed the flow
invasion percolation mod¢l], at each growth step onlyne  stops.
lattice site was allowed to be occupied. Recertl@], a In the present paper we study the cluster, the backbone,
more realistic model was investigated, which permits that and the elastic backbone structures of the multiple invasion
certain number of lattice sites can be invaded at the samgercolation for both the perimeter and optimized models. To
time: themultiple invasion percolatiomodel. There are two determine the backbone and the elastic backbone we em-
kinds of multiple invasion percolation: the perimeter modelployed the burning algorithrfil4]. Although there are actu-
and the optimized model. In the first model the clusterally more efficient algorithms based on artificial intelligence
growth is controlled by the flux through the perimeter. Thetheory[15] or recursive algorithni16], we prefer the burn-
optimized model is governed by a scaling relation betweering technique because beyond the backbone and elastic back-
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bone identification it also permits the determination of the TABLE I. The scaling exponents of the perimeter model. The

red sites and loops. order they appear in this table corresponds to the cluster, backbone,
The scaling exponents for the mass, the red sites, thend elastic backbone, respectively. Those marked with an asterisk

minimum path, and the loops are found for many values ofvere calculated using the ratio method.

the parameters andD of the perimeter and the optimized

models. We did not strive to make these exponents very De D D D min
precise. Indeed we paid more attention to the physical 1.891) 0.77(2) 1.991)

changes occurring with the variation of the parameters, ag g 1.641) 0.77(2) 1.721) 1.14(4)
long as both models were conceived to continuously interpo- 1.17(4) 1.08(5F 1.191)

late from fractal to compact objects. The optimized model 1.981) 0.38(6) 1.991)

reveals two amazing properties: not only the cluster but als 1' 8492) 0'38(6r 1'92(1) 1.05(1F

the backbone mass scalegactly with the gyration radius

and the red points practically do not exist anymore. This
means that the cluster, generated with the optimized algo-
rithm, has acquired a high degree of connectivity without™

1.05(2¢  1.10(2f 1.171)
1.991) 0.29(6)" 1.991)
2.002) 0.29(6)* 2.002) 1.05(1)

having to increase its fractal dimension. 1.02(2y 1.08(2y 1.113)
1.991) 0.07(4Y 1.951)
0.3 2.001) 0.07(4) 1.943) 1.04(1)
Il. THE PERIMETER MODEL 1.03(3) 1.03(3) 1.121)
We briefly recall the growth mechanism established for 1.991) 0.05(4y 1.971)
the perimeter model. Suppose that at some growth $tige 0.4 2.0@1) 0.05(4y 1.974) 1.02(1y
cluster mass i, and the rectangle area inside which the 1.01(4y 1.01(3y 1.0033)

cluster is inscribed i$\. The square root of can be inter-
preted as a measure of the correlation lefdtA. This in- ) ) )
terpretation comes from the fact that, as in the ordinary in- '€ cluster mass, the fractal dimension, and its depen-

vasion percolation, the multiple invasion percolation can als§lence onF were already studieffl0]. Here we extend the
be thought of as a kind of critical percolation mo@#0]. At results to the backbone and the elastic backbone. The data

time t+1, the cluster masMl,, ; will be given by for the bac_kbone are of good qualit_y and they were obtained
by averaging over 100-2000 realizations. We get, for ex-
ample, D(F=0)=1.64+0.01, which is completely com-
patible with the most extensive simulation performed by
. i Grassbergef16], who got 1.6470.004. Our results are
where Int means the integer part, aRds an external pa-  ghown in Table I. With increasing the backbone fractal
rameter (6=F<1) corresponding to the fraction of the pe- gimension goes to 2 in a faster way than those of the cluster
rimeter 4\/A to be invaded at time-+1. We start the grow-  jiself. From Table | we see that arouffd~0.3 some expo-
ing process at the center of a square lattice. nents break their monotonic behavior. At this point the clus-
It was numerically shown in Ref10] that for F values  ter has a circular form and the corresponding gyration radius
greater than 1/2 the cluster is compact and fetF0<0.5it g maximum([10].
interpolates between the ordinary invasion percolatioith For the elastic backbone we found deviations from the
fractal dimensionDg=%;) and the closed-packed limit straight line when we plotted IN)In(L). This strongly indi-
(De=2). We found a simple analytic demonstration of thiscates that corrections to scaling are necessary. We adopted
fact. For a lattice sizé, a cluster growingcompactlyfrom  the ratio method 13] to correct them. FoF=0 we got
its center will touch the boundary at a tire L/2 and it will Dg=1.17=0.04, which is in fair agreement with the result
acquire the form of a square with sitle L/v2. The mass is of Herrmannet al. [14]: 1.10+0.05. WhenF increases, the
M,=L2/2. At time t+1, all available sites will be invaded trend is that the elastic backbone approaches the form of a
and the maximum possible massMs, ;= (L+2)?/2. Using  straight line connecting the lattice center to the point where

Mis1=M,+Int(4F JA), (1)

Eq. (1) we have the inequality the cluster hits the frontier. The mass exponent goes to one.
1 1 B. The red sites
F<-+ o, 2 _
2 2L The number of red siteN, scales as
N,~LPr. (4)

which for large lattices saturates Rt= 3.
In order to obtain the scaling exponents, throughout this Here again corrections to scaling are necessary. Of

section we use lattices of size=51, 101, 201, and 401.  ¢ourse, the exponen, for the cluster and the backbone are
the same. In the case of the ordinary invasion percolation
A. The mass (F=0), D, is known exactly[19]. Coniglio used the rela-

tions between the percolation model, Potts model, and Cou-

lomb gas to geD,=32. Our resultD,(F=0)=0.77+0.02 is
in good agreement. AE goes to 0.5 the exponei, ap-
M ~ LPF. 3 proaches zer¢see Table)l For the elastic backbone we get

The mass of fractal objecf48] scales with the lattice size
L as
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TABLE II. The ratio N,/Ny measures how many times the
number of experiments in the perimeter motlg| exceeds that of
the optimizedN, when we impose they have the same relative
standard deviatiodM/M. The first and the second lines corre-
spond to the cluster and the backbone, respectively. We used
No(L=51,101)=100, No(L =201)=15.

00 04 02 03 04 05

L AM/M Np/N,
51 0.009 21
0.013 10
101 0.009 24
0.013 13
201 0.017 36
0.022 25

D. The minimum path

The minimum path scales as

|min~LDmin- (6)

FIG. 1. In gray is a typical cluster of the perimeter model with ~ Naturally, the exponenbD ., is the same for the cluster,
F=0.4 on a lattice of sizé& =401. The elastic backbone is shown backbone, and elastic backbone. Our estimate
in black. The inset gives the dependence of the loop number scalin® ,;,(F=0)=1.14+0.04 is consistent with the most precise
exponent withF. valueD,;,=1.13070.0004[16]. We see from Table | that

D in @approaches 1 with increasirkg
D,(F=0)=1.08t0.05. As we have already observed, the

elastic backbone approaches a straight line with increasing IIl. THE OPTIMIZED MODEL
F. This means that almost every site belonging to the elastic o ) )
backbone is a red site, $9,~Dg—1 asF goes to 0.5. The optimized mode]10] was devised in order to have a

growth mechanism obeyingxactlythe scaling

C. The loops M ~(Rg)D 7
We can put a bond connecting any two nearest-neighbor
occupied sites. The result is a connected graph for which ther as near to it as possib(R, is the gyration radius and is
Euler relation holdsN,=N,—M +1, whereN, is the num- @ real positive external parameter that can be tlmed_
ber of cycles or loops,, is the number of bonds arid is Basically we use the following strategy: eachgrowing
the mass or the number of sites. For the burning algorithm oftép we have a list containirgl the cluster perimeter sites
the square latticey, is calculated by counting the number of that can be invaded and we seek the number of sites that
times that one tries to burn a site that is already burned in thghould be invaded in order that Eq) is verified as closely
same time unit. as possible. This proceeding builds a fractal object that is
The number of loop#\, scales with the lattice size as ~ €xtremely stabilized in the sense thawiny stage or size the
scaling is perfectly obeyed not only in the asymptotic limit
N,~LPr, (5) (as usual Another important advantage is that the necessity
of mass averages on the cluster ensemble diminishes. We

The data are of very good quality and no correction tolOPe this can be very useful in dilute systems. _ _
scaling was necessary. The exponBptapproaches 2 with Any cluster is representative because the mass_dlsperswn
increasingF for both the cluster and the backbone. This is aiS Very small. As an example, we compare the ratjg/N,
consequence of the Euler relation. Rsincreases, the clus- (Np @ndN, are the number of experiments performed in the
ters become more compady,, approaches ¥, and, for perimeter anq optimized mod_els, respectiyelyhen both _
large clustersN,~M~LZ. On the other hand, looking at models are glnjulated to achieve nearly the same relative
Table I, the exponent seems to approach 1 for the elastigtandard deviatiodM/M. The results are shown in Table
backbone but this not true. In Fig. 1 we show one typical”- o
cluster withF = 0.4 andL =401. The elastic backbone starts ~ FOr one-to-one realization, we have already compared the
at the center and follows to the right nearly as a straight lin@Ptimized algorithm to that of the ordinary invasion percola-
until it finds an obstacléa site with a large random number tion. The results were even more impressigsee Fig. 6 of
associated Then a kind of jet appears, which increases theRRef. [10).
number of loops. In the limit —«~ such an effect can only As shown in Ref[10], whenD e[ %,2] it coincides with
be avoided ifF=0.5. This means that for the elastic back- the usual fractal dimensioB¢; if 0 <D< % the system is
boneD, goes abruptly to zero ne&~ 0.5 as shown in the frustrated in the sense that it tries but fails to invade less than
inset of Fig. 1. one site; ifD>2 the system is also frustrated but now for a
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TABLE Ill. The scaling exponents of the optimized model. The

N order they appear in this table corresponds to the cluster and back-
D=19 T bone, respectively.
105 o - In(M)
x - In(N}) - (a) slope=1.82 D De D, D min
o = 1.89 1.89 1.74) 1.178)
. s 20 1.741) 1.631)
s 1.91 1.91 1.761) 1.052)
9.5 xxxﬁgxx (b) slope=1.72 1 1.811) 1.711)
o x 1.95 1.95 1.8Q) 1.002)
d X" 1.931) 1.821)
X 2.00 2.001) 2.001) 1.001)
X 1.991) 1.991)
8937 4z 43 44 45 45 47 48 a9

In(Rg)

B. The red sites

FIG. 2. (a) The symbolo stands for the logarithm plot of the

backbone mass vs its gyration radi(®. The logarithm dependence
of the backbone loop numbé&{; with the gyration radius.

An astonishing result that we got is that the number of red
sitesN, of the optimized model isery small and randomit
does not obey any power law. For example, when we

different reason: the invasion cannot be faster than allowe row one cluster and count the number of red sites at sizes
’ =51,101,151,201,251,301,401 we findl=1,8,8,1,6,3,7.

inthe two-dimensional lattice. In the last two situatidhs To investigate this further, we simulate Bi=1.95 (just in
P - . . the middle of the physical regiofl.89,2.00) with lattice
In this paper we use the optimized algorithm to simulate . = o
only onecluster. The growth of this unique cluster is sto edS'ZGSI‘_51’101’151’201 and the number of realizations
y - neg q PP 45 100,60,15, respectively. We gofN,)=1.33,1.49,
each 50 steps. Then we measure the mass and the loop nuin- T . .
. . .43,1.87. This brings us to the conclusion that for our opti-
ber for both the cluster and its backbone. Their correspond-’. o X
: . . . mized model the concept of red sites is not important. The
ing gyration radius and the minimum path are also deter-

mined. At each stage the rectangle in which the cluster isnumber of red sites number is so small that the probability of

actually inscribed is also obtainedup to lattice size disconnecting the cluster by removing randomly any site is
L = 401). The lattice center and the poiR, where the clus- practically zero. The optimized algorithm destroys the red

ter touches that rectangle are used to get the minimum patﬁ!tes’ increasing the cluster connectivity.
The elastic backbone is the collection of all these paths. It is
a faint structure with almost one-dimensional characteristics.
When we pass from one rectangle to the next, usually it The number of loopdN; scales with the gyration radius
happens thaP, turns, for example, from north to south or R in the usual way:
east. So in just one step the sites composing the elastic back-

bone change wildly, precluding its determinati@amember

that here no averages are made

We studied the optimized model only in the physical re-

gion D €[ %,2]. Below we present our results.

C. The loops

N~ (Ry)®". ®

Looking at Table Il we conclude that, as expected, both
exponents go to 2 with increasiriyy.

To see the influence of the ensemble averages on the scal-
ing exponents we have performed 40 realizations of the op-
timized model on a lattice size=251 andD =1.91. We got
D,=1.73(4) for the clusterD=1.84(1) andD,=1.70(2)
for the backbone, and ,;;,=1.023). These results are fairly

A. The mass

Naturally, D=D¢ for the cluster mass. To our surprise
the scaling(7) is also perfectly obeyed by the backbdsee
Fig. 2@]. Remember that Eq7) was only imposed on the
cluster. In Table Il we present the fractal dimensiansfor ~ 9°0d when compared toD,;=1.781); Dg=1.841),
some values oD. Remember that we performed only a 21=1:71), andDy;=1.052), respectively, obtained for
unique realization. The errors bars correspond to the standalSt ©ne realization on size=401. Unfortunately, we were
deviation calculated along this experiment. Observe that dt°t @Ple to simulate larger lattices because of the huge CPU
D =1.89(the fractal dimension of the ordinary invasion per- 4émanda uniqueL =401 realization took 52 h on an Alpha/
colation we get for the backbon®r=1.74+0.01, which is 27> Station.
greater than the 1.6470.004[16] of the ordinary invasion
percolation. This means that although the optimized model at
D=1.89 and the ordinary invasion have teamecluster
fractal dimension, they are intrinsically different since their ~ The minimum path scales as E¢f). Our results are
backbones are different. Conductivity properties will not beshown in Table Ill. As in the perimeter model, the exponent
the same. D min @pproaches 1 as the cluster becomes more compact.

D. The minimum path
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TABLE IV. The abrupt variation of the mass, loops, and red IV. CONCLUSIONS

oints at the moment of the explosion. . . .
P P We use the burning method to identify and analyze the

cluster, the backbone, and the elastic backbone structures of

Cluster Backbone . . ) ; .
the multiple invasion percolation model. We determine the
Before After Before After . . g
scaling exponents for both the perimeter and the optimized
Mass 1619 2358 1045 2310 models as well as their dependence with the paraméters
Red points 52 1 52 1 andD. For those structures we also study the behavior of the
Loops 863 1981 776 1981  Mass, the number of red points, the number of loops, and the

minimum path. The optimized model in the physical region
D=Dre[%,2] exhibited two amazing properties: the per-
fect scaling of the backbone mass with its gyration radius

) and the disappearance of red points. This model seems to be
We already know from Ref.10] that the system is frus- well suited to treat dilute systems where the fluctuations of

trated whenD €[0,55] (De=%) or D>2 (Dr=2). In the the clusters ensemble hamper the data accuracy and cloud

last regime the burst phenomenon takes place. This corrdbe reality.
sponds to an enormous and sudden mass explosion. We
simulate atD =5.00 (L=201) just before and after one such
explosion(at time step 965, just as in Fig. 11 of the Ref.  We acknowledge CNPgConselho Nacional de Desen-
[10]). The results for the cluster and the backbone are showwolvimento Cientiico e Tecnolgico) and FAPESRFunda-
in Table IV. It shows a dramatic increaggecreaseof the  ¢ao de Amparo a Pesquisa do Estado de 8aul9 for the
mass and loop&ed sites. financial support.

E. The burst phenomenon
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